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Droplet stability in a finite system: Consideration of the solid—vapor
interface
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The thermodynamic stability of a single, one-component droplet in a finite system with adsorbing
walls is investigated. The conditions under which a stable equilibrium state of the droplet is
predicted to exist depend critically on the adsorption isotherm of the confining walls. If the amount
absorbed remains finite when the pressure in the vapor is greater than the fluid’s saturation pressure,
then a stable equilibrium state is possible. When the model is extended to a system of multiple
droplets, the stable equilibrium state is predicted to always correspond to a single drop2203©
American Institute of Physics[DOI: 10.1063/1.1554752

I. INTRODUCTION AND BACKGROUND droplet sizes R=0.5nm), the pressure differencePY
A. Kelvin relation —P.) on the right side of Eq(1) is negligible compared to

. » _ ~the pressure difference ¢2V/R), allowing the Kelvin rela-
The equilibrium conditions at an isothermal, spherical,jjon to be recast as

one component liquid—vapor interface can be predicted by

. . 2 LVUL_C
the Kelvin relatior PV_p_ exp< ékT ) @
y vE(PY=P..+2y"IR)
PY=P,ex KT ' 1) a form that is often used. The assumption required to use this

approximation has been not&d.

whereP is pressure;y is surface tensiony is specific vol-
ume, R is the radius of curvature is the Boltzmann con-
stant, andr is temperature. SuperscrigtsV and LV refer to
the liquid phase, vapor phase, and the liquid—vapor interface, ~The stability of a single, one-component droplet was first
and the subscript refers to saturation conditions. The deri- investigated by Gibb3who showed that such a droplet in an
vation of the Kelvin relation assumes mechanical and therisothermal, unbounded expanse of its own vapor at a uniform
mal equilibrium at the interface, and equality of the chemicalpressure higher than the saturation pressure corresponding to
potentials of each phase. The saturation properties are evalthe system temperature will have one equilibrium size, and
ated at the system temperature. When the liquid is on théhat this state is unstable. The Kelvin relation can predict its
concave side of the interface, such as for a drogkets  value. The equilibrium state is unstable because mass trans-
greater than zero. In this case, the Kelvin relation predictéer to or from the droplet has no effect on the pressure in the
that the pressure in the vapor will be always higher than th&/apor. The unstable equilibrium state plays an important role
saturation pressuré.e., at equilibrium, the vapor is super- in homogeneous nucleatiérand has been observed in mo-
saturatel lecular simulationg:®

There have been many attempts to experimentally verify A second equilibrium state, which is stable, is predicted
the Kelvin relation, but none have gotten agreement td0 exist in a one component system of finite size and
within less than several percéit.Some investigations have mass»'® The equilibrium state is stable because mass trans-
considered nonequilibrium processes, while the Kelvin relafer to or from the droplet has an effect on the system pres-
tion applies only to an equilibrium state. One of the majorsure. The pressure in the vapor when the droplet is in the
difficulties is that the predicted difference betweRl and ~ Stable equilibrium state is always above the saturation pres-
P.. is only significant for very small radii of curvature. For Sure, consistent with the Kelvin relation. In the work of Refs.
example, for water at 20 °C, a droplet radius smaller than 2.6 and 10, the effect of the solid—vapor interface was ignored.
4m is necessary to get a difference betw®nandP,, ofat Raoand Berniesupport the prediction using molecular simu-
least 1 Pafor this and all subsequent calculations, thermo-lations, where the use of periodic boundary conditions elimi-

physical properties are taken from Rej. #or meaningful nates the need to consider a solid—vapor interface. The work
of Vogelsberge® has been used to investigate droplet

nucleationt~**There have been no experimental investiga-
dpresent address: Laboratory for Research, Reaction and Phase Changsdiions of the predictions made in Refs. 9 and 10.
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B. Droplet stability

0021-8979/2003/93(6)/3619/8/$20.00 3619 © 2003 American Institute of Physics

Downloaded 13 Jul 2003 to 141.212.137.17. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



3620 J. Appl. Phys., Vol. 93, No. 6, 15 March 2003 A. J. H. McGaughey and C. A. Ward

B. Determination of equilibrium conditions

——Isolated
System For a bulk phase,
F=—PV+ uN, 3
@\ —Reservoir where u is the chemical potential. For an interface,
\\Droplet F=vyA+ uN. (4)
VILNT 45V
\\ . For the system under consideration,
T Composite
System F=FV+F.4+FY4+FSY
FIG. 1. System of interest. The isolated system is composed of a composite = —PWY+ uYNY=PLVE+ uENE+ YA
system surrounded by a reservoir. The composite system has fixed volume,
mass and surface area and contains a spherical, one-component droplet in its + ,LLLVNLV + )’SVASV+ ,U«SVN sV, 5

own vapor The necessary condition for an equilibrium state is that the

total differential of the Helmholtz potential is equal to zero.
For a system at constant and uniform temperature, the
Gibbs. In this case, the stability is a result of the lowering ofGibbs—Duhem relatidfi can be written for a bulk phase and

the liquid chemical potential by the solute, generating equi@n interface as

librium conditions at a pressure lower than the saturation  —vdp+Ndu=0, (6)
value. The experimental results of La Mer and Gridrave

been interpretddas an example of this stable state and aand
verification of the Kelvin relation for a two-component sys- ~ Ady+Ndu=0, (7)
tem. . .

In recent reports, claims have been made to the effecrteSpeCt'Vely' The system constraints are
that “the Kelvin equilibrium for a single component drop is VE+WVW=VT NV+NE+NY +NSV=NT, (8)
always unstableWe find that for a droplet in a finite sys- and a constant solid—vapor surface area. Setlifigo zero
tem, a critical issue is the nature of the equilibrium adsorp-and applying the Gibbs—Duhem relation and the constraints
tion isotherm that describes the adsorption on the Conﬁninﬁives the equilibrium conditions:
walls. As the pressure in the vapor phase approaches a criti-
cal value, denoted aB), the amount of adsorption is pre- Vo L_ Wv_ sv L V_27LV
dicted to asymptotically approach infinity. This pressure may ~ # ~ 4 =# =u~" and Pr=Pl=—p-—. ©)

view he pr r which filmwi ndensati ) . .
be viewed as the pressure at c 1S€ CO densat Orllhe first condition states that there is no net mass transfer
occurs. The number and nature of the equilibrium states arg

redicted to depend on the value BY. The develoned etween the four phases. The second condition is the Laplace
Fheory is extendgd to a system of muI?ibIe droplets P equation. Thermal equilibrium has been assumed with the

use of the Helmholtz potential. Solving the equilibrium con-
ditions simultaneously will give an expression for the radius
of an equilibrium droplet. This radius is called the critical

; ; 19-21 .

Il. THEORETICAL DEVELOPMENT radlus,'anql is denoted Wy, . In R.e'fs.. 19—21, the criti-
o cal radius is used to refer to the equilibrium size of a bubble

A. Description of system in a liquid solution. Here, the same concept is applied to a

The system of interest is shown in Fig. 1. It is composeddroplet in its own vapor.
of a composite system surrounded by a reservoir. The two If the liquid phase is approximated as a slightly com-
parts make up an isolated system. The reservoir has a coRtessible liquid, and the vapor phase is approximated as an
stant and uniform temperatufie The walls of the composite ideal gas, their chemical potentials can be express€d as
systgm are rigid, noppermeaplg :_;md diathermal. Thus, when L T, PY = 1T, P (T) ]+ 0 (TP = P.(T)], (10
the isolated system is at equilibrium, the composite system
will have the same temperature as the reservoir. The comp0§~nd
ite system consists of a single, one-component spherical
droplet in its own vapor. The droplet radiusRs The com- V[T, PV]=uY[T,Po(T)]+KT In P
: : »(T)
posite system has a volunw, a solid surface areasV, and
containsNT molecules. The superscript SV refers to theWith Egs.(10) and(11), and noting that the chemical poten-
solid—vapor interface. Field effects are ignored. Based on théials of the liquid and vapor phases are equal at saturation
description of the composite system, it can be inferred thagonditions}® the equivalence of the liquid and vapor phase
its independent variables afe V', NT, andAS". These are chemical potentials in E¢(9) can be simplified to give

v
. (11

the independent variables Bf the Helmholtz potentidi! A 2,V

minimum of F will correspond to a stable equilibrium state R.= T 7pY . (12
and a maximum will correspond to an unstable equilibrium _L|n<_) +(P.,,—PY)

state. ve \Po
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All fluid properties are assumed to be evaluated ainless  solve the equations algebraically; a numerical solution is re-
noted. Equation(12) can be rearranged to give the Kelvin quired. Before investigating the behavior Rf, the Helm-
relation, Eqg.(1), with R equal toR.. holtz potential will be formed.

It is desirable to have the expression for the critical ra-
dius in terms of the independent variables. By applying theéC- Formation of the Helmholtz potential
system constraints, the assumption of an ideal vapor phase The Helmholtz potential is given by E¢B). As it stands,
and by neglecting\"’, the pressure in the vapor can be there is no way of plotting® vs R This problem can be
expressed as resolved by introducing a reference conditieg, defined as
the state where there is no droplet present in the system and

3
(NT—NSV— 4’7T|? )k the vapor is in equilibrium with the adsorbed phase. Thus,
3v
PV= pp=c (13) Fo=—PgVT+u"[T,PgINy+ v5 'ASY
vT—
3 + ST, 75 INGY, (15)
Equationg12) and(13) are two equations in four unknowns: where
R., R N5V, andPV. It is important to distinguish between y (NT=NSVIKT
R. andR. The critical radiusR., is a thermodynamic prop- POZT, (16)

erty of the system, and is only a function of its independent
variables. It defines an equilibrium condition, and existsandNg" andNg are the number of molecules in the solid—
whether or not there is a droplet actually present in the sysvapor interface and the vapor phase in the reference state.
tem. The radius of an existing dropld®, can take on any Ng' can be found by solving Eq¢13) and (14) with R set
value as long as it satisfies the system constraints. At equfqual to zero. The solid—vapor surface tension in the refer-
librium, R, must be equal t& which reduces the problem to €nce state is/5. By conservation of mass,
two equations in three unknowns. In order to close the two v, NSV T (17)
. . . . . 0 0 ’

equations, a model of the solid—vapor interface is required.

The Brunauer-Emmett-Tell€BET) isothernf? has his- and as the two phases in the reference state are in equilib-
torically been used to analyze a solid—vapor interface afium,
equilibrium. It predicts the number of moIgcuIeN;,SV, that Fo=— (NT=NSV)KT+ V[T, PYINT+ ySVASY.  (18)
will adsorb on a smooth homogeneous solid surface at equi-
librium as a function of the pressure in the vapBl. By  As the vapor has been approximated as an ideal gas,

generalizing the derivation of the BET isotherm done by PX
Hill, 3 the « isotherm is defined &% MV[T,PX]ZMV[T,PV]‘Flen(a : (19
\Y%
MASVCaE— By applying Eq.(8), subtractingF, from F gives
NSY= v ——v7. (14) F—Fo=(u"— "IN+ (u = )NV
(1—ap—oc 1+(C—1)ae|:,—oc +(pSV= wVINSV— (PL— PV) VL 4 yV ALY
v

whereM is the number of adsorption sites per unit area, and CNTKT 1-1n E _pWT
C and « are constants. The parametévs C, and « are pv

R3 LV
F—Fo=4mR*y"Y— ———— + N'kT|
3R

C

functions of temperature and must be determined experimen- v SV nsv
tally. The model assumes that multilayer adsorption occurs, (Y =g AT (20)
and that there is no interaction between stacks of adsorbeg, equilibrium, Eq.(9) can be applied, and E¢O) reduces
molecules. WhervPV/P., is equal to unity, the number of to
adsorbed layers becomes infinite and filmwise condensation v
will occur. Thus, Py is equal toP../a. Keshavarz and Po
Ward™* have applied this isotherm to experimental results of 1=In pv
water adsorbing on glass surfaces. Thisotherm is used in
all the ensuing analysis. We note that the BET isotherm is —PYWT=NGkT+ (y5V=y5)ASY. (21)
recovered_ from Eq(14) whena is equal t.o unlty. Note that as- is constantd(F —F) is equivalent tadF.

Equatlors13(13)vand(14) are two equations with the trUee To determine an expression for the last term in &4)
unkno;/{//nsN ' P. , andR. They can be S‘?'Ved to give in terms of the independent variables, a method developed
and N>Y as functions ofR. The critical radius can then be by Keshavarz and Wafflis used. For a solid—vapor inter-
expressed as face under isothermal conditions the Gibbs—Duhem relation,

Eq. (7), may be written as
&VSV

R.=R(T,V,NT,ASVR).
NSV
With the requirement th&R, be equal taR in an equilibrium (22

state, the equations have been closed. It is not possible to

T ASVY
. A
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As the chemical potential in the solid—vapor interface is 3x10°]
equal to that of the vapor, and the vapor has been assumed to A R =R
. 2x10°
behave ideally, )
v NSV o 1x10°
SV_ . SV_ _ v o
Y= kaPg ASVRV dpPY. (23 g o
With NSV from Eq. (14), the right side of Eq(23) can be F-1x10°
integrated to give b=
V.2x10°*
pY Py
l-a— || 1+(C-Da— -3x10° . .
. P. P, 0 00002 0.0004 0.0006 0.0008 0.0010
,ySV_ v =KTMin Y oV | Droplet Radius, R (m)
0 @
(1—&— 1+(C-1)a—
- P.. 0.020
(29)
so that the Helmholtz potential can be expressed as 0.015
F—Fo=F—Fo(T,VI,NT,ASR). :
. . . " 0.
Thus, given the values of the independent variafiley”, 010
NT, and ASY, and a-isotherm parametens!, C, and «, the
Helmholtz potential can be plotted as a function of the drop- 0.005
let radiusR and the stability of the system can be analyzed.
0 (1] 0.0002 0.0004 0.0006 0.0008 0.0010
I1l. THEORETICAL INVESTIGATION Droplet Radius, R (m)

The function a(T) in the « isotherm determines the ®)
pressurePX at which film-wise condensation will occur. Re- FIG. 2. (a) Critical radius andb) Helmholtz potential plotted as a function
cent experimenfé have Suggested that for water adsorbingOf the drqplet radius_forx qual to unity. As the curve for the_ (_:rit_ical radius
on glassg is slightly greater than unitye—1 on the order of sviisang:é:ﬁee?:gszﬁ? the lirfé equal toR, there are no equilibrium states
10" 7), so that the asymptote is found to occur at a pressure
less than the saturation value. We start by considering the
stability of the droplet using the-isotherm for the case af To understand why no equilibrium states exist, consider
equal to or greater than unity. the derived equilibrium conditions. The Laplace equation
and the equivalence of the liquid and vapor chemical poten-
tials were combined to give the Kelvin relation. It predicts

In Fig. 2a), a plot of R; vs R for o equal to unity is  that the pressure in the vapor at equilibrium must be higher
shown. The values of, V', N', and A®Y are chosen as than the saturation pressure. By choosingqual to unity,
20°C, 0.0041 iy 3.1x 10°°, and 0.038 rfy respectively, and  the pressure in the vapor cannot be greater than the saturation
the fluid is water. These values are typical of an apparatugressure, or filmwise condensation will occur. These two
recently used to investigate water droplet evaporatioRt  equilibrium conditions are mutually exclusive, and it is
this temperature, the saturation pressure is 2339 Pa, and Witherefore impossible for there to be any equilibrium states
a equal to unity,Py is equal to 2339 Pa. The-isotherm  yith a droplet present, stable or unstable. Using the same
parameter< andM are taken as 425.3 and %20°°m~?,  reasoning, there will be no equilibrium statesiifis greater
values found for water adsorbing on glass at 20 °C in Refthan unity(i.e., when the location of the pressure asymptote
24. While these values are only indicated to be valid foris pelow the saturation pressilire
pressures very close to the asymptote, we use them over the Based on these results, a stable droplet is not predicted
entire pressure range to keep the analysis reasonable. As Wil exist under any conditions. This result has arisen from the
be seen, it is the location of the asymptote that is the moshclusion of the adsorbed phase. However, while the experi-
important feature of the isotherm. mental results of Keshavarz and WA4tduggest that is

The critical radius is always less than zero, and it will greater than unity for a water—glass system, nothing in the
never intersect with the lin®; equal toR [also shown in  gerivation of thex isotherm requires this to be true. We next
Fig. 2@)]. Therefore, there are no equilibrium states with acgonsider the case of less than unity, where the pressure

droplet present. The only equilibrium state is when there is;symptote is at a location above than the saturation pressure.
no droplet present. This is the reference stge Other val-

ues of the independent variables were considered, and th;gs less than unit
result was always found. In Fig(l®, a plot of F—F; as a - unity

A. a equal to or greater than unity

function of R is shown. The Helmholtz potential is a mono- For the same independent variables used in the previous
tonically increasing function oR with a global minimum at section, the curves dR. and F—F, as functions ofR are
R equal to zero. plotted in Fig. 3 fora equal to 0.9999, which corresponds to
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4x10°®
0.0006}
E 2x10°
e 0.0004F
k=] S
2 0.0002} = 0
e I,
E ) e d_ 2x10°
0
@] R I f"—'—'
0 0.0002 0.0004 0.0006 0.0008 0.0010 4x10°
Droplet Radius, R (m)
@ 0 0.0002 0.0004 0.0006 0.0008 0.0010
105w Droplet Radius, R (m)
R
0 -----.CI._ - FIG. 4. Helmholtz potential plotted as a function of the droplet radius at
2x10° three different temperatures. As the temperature increases, the size of the
- 2100 stable equilibrium size decreases until there are no equilibrium states with a
= :f}'o 0 4x10% droplet present.
[N Optre s — — = = = = — 1 - - -
t,
-2x10°

be valid over a small range of temperatures without signifi-
cant error. The value ok is held constant. As the saturation
pressure for a pure substance is a monotonically increasing
function of temperature, the saturation pressure used in the
. calculations will increase. For equilibrium to be restored, the
Droplet Radius, R (m) . . . .
) pressure in the vapor.W|II need to rise to a value slightly
above the new saturation pressure. The only source of mass
FIG. 3. (a) Critical radius andb) Helmholtz potential plotted as a function is the droplet, and it will evaporate until the new equilibrium
%tt:zzr%%gtrsg;zzg?ﬂ equal to 0.9999. There are two equilibrium states pressure is reached. The stable equilibrium size should de-
: crease, and this is what is found. The mass in the adsorbed
phase does not change significantly. A plot showingF,
a PY value of 2339.23 Pa. The results are significantly dif-VS Rat temperatures of 20 and 21 °C is shown in Fig. 4. Also
ferent compared to those shown in Fig. 2. The critical radiudndicated is the path that the droplet would follow as it
is now positive over a certain range Bf and there are two moved _bgtvyeen equmbnum.stlates. The _system responds so
intersections with the lin®. equal toR. There are thus two asto rn_|n|m|zeF— Fo, 6,‘”0,' this is accomplished by the drop-
equilibrium radii. This is not unexpected, as both the Kelvin!€t getting smaller. A similar thought process can be used to

relation and thea-isotherm equation can be satisfied as thePredict the effect of changing the other independent vari-
pressure in the system can be above the saturation val@ples- . _

without the possibility of filmwise condensation. The equi- ~ NOW consider the case of changing the temperature of
librium radii are 2.0 10 5m and 6.4610 %*m and will  the example system to 23°C. The droplet will evaporate,
be denoted byR.; andR,,, respectively. From Fig.(®), the raising the pressure in the vapor. However, .irl1 t_his case, .it
first equilibrium state is unstable maximum ofF —F), completely evaporates, and the result.mg qu_ll|pr|um state is
while the second is stabl@ minimum). The pressure in the & homogeneous superheated vapor in equilibrium with the

vapor in the unstable equilibrium state is 2339.123 Pa and iAdsorbed phase. There is not enough mass in the droplet to
the stable equilibrium size is 2339.004 Pa. Both of thes&2iS€ the pressure to above the new saturation value. A plot

pressures are above the saturation pressure, consistent W%FI_bFIO at23°Cis E;lllso tsr?owndi_n Fig. 4. N?tte that thi@ is
- - v a global minimum when the radius is equal to zero. It is a
the Kelvin relation, and below, . 9 q

stable equilibrium state.

As the system temperature increases, the system goes
from having two droplet equilibrium states to having none.

Experimentally, the equilibrium pressure in the vaporThere will be a transition point where there is one equilib-
could not be distinguished from the saturation pressure forium state. This will correspond to an inflection point on the
the values ofx considered. With this in mind, it is possible to F—F, curve, and is therefore an unstable equilibrium state.
predict how the equilibrium state will change if one of the Thus, even whem is less than unity, for there to be a stable
independent variables is changed. equilibrium state at a temperatufethere are further restric-

Suppose that the temperature of the system discussed fions on the values of the independent variablésNT, and
Sec. IlI B is raised to 21 °C whil®™, N7, andASY are held  ASY. For the case of no adsorption, this issue has been
constant. The adsorption isotherm parameters are assumedaddressed®

-4x10°}

Ry
0 0.0002 0.0004 0.0006 0.0008 0.0010

C. Number of equilibrium states
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IV. COMPARISON TO PREVIOUS WORK TABLE |. Comparison of the three models. Where applicable, the indepen-

The results of Sec. Il are now compared to the predic %]t Variables arél=293.15K, N'=3.1x 10% V'=000041r, and
. ; ASV=0.0378 8. The saturation pressure is 2339 Pa.
tions of Refs. 5, 9, and 10. If no adsorption occurs, @)
can still be applied for the critical radius, but the expressions Ref. 5:
for the Helmholtz potential, Eq21), and the relevant pres- Unbounded Current Work:

: : reservoir with Refs. 9 and 10: Solid—vapor interface
sure terms, Eqd13) and(16), simplify to uniform  Finite system with considered in a finite

) W Ry pressure no adsorption  system,a=0.9999
F=Fo=4mR%y™~ 3R, Rey (M) 4.0010°° 4.0010°° 2.05%10°°
R., (M) N/A 8.05x 104 6.46x 10 *
( pg) F—Fo(Re1) (J) 4.89x10° 18 4.89x 10718 1.28x10710
+N'kT|1-In| — | |- PYVT, (25) F—Fo(Re) (J) N/A —0.0415 —4.66x10°°
PY PY(Rq1) (Pa) 3060.100 3060.100 2339.123
4R PY(R.,) (Pa) N/A 2339.773 2339.004
T
(W= 2T
PV:T, (26)
V- 3 unstable and one stable. The unstable size is analogous to the
unstable size found for the droplet in a pressure reservoir.
and This can be seen by considering E&5) in the limits of Eq.
v NTKT (28). In this case, the expressions for the critical radius and
POZT- @27 the thermodynamic potential become equivalent to those of

Gibbs for the same temperature and a pressuﬂé},’of For

In this case, the reference state corresponds to all the m s caseP! is equal to 3060.1 Pa. This is the value used for
. . . . . . 0 . .
being in the vapor. This is the result obtained in Refs. 9 a”,gihe reservoir pressure in the evaluation of E28). The val-

10. In the limit of ues of the radius and the potential at the unstable equilibrium
n the limit o are thus the same in both cases. Due to the very small equi-
T 47R3 T 47R3 librium droplet size, the finite nature of the system has no
N'>——F— andV'> , (29 ﬁ ; ;
3v 3 effect and the vapor phase acts like an unbounded reservoir.

N In the finite system, the stable equilibrium exists because
Egs. (25-(27) simplify to mass transfer to or from the droplet will have an effect on the
8wR3y™ system pressure. If a droplet is in the stable equilibrium state

_ — 2, LV __
F—=Fo=47R% 3R, (29) and some liquid evaporates, the pressure in the vapor will
increase. To return to equilibrium, the pressure must de-
and g . .
. crease, and this is accomplished by having some of the vapor
v oy NKT condense on the droplet, bringing it back to its original size.
Po=P"= vl 30 A similar argument can be made for the case of vapor con-
o . ) 'B densing on the liquid surface.
This is the system that was investigated by Gibasd cor- While the behavior exhibited in both finite systefmsth

responds to a case where the droplet is in an unboundeg,q \ithout adsorptionis qualitatively similar, the condi-
reservoir with uniform pressure. Note that the expression fofjons ot hoth the unstable and stable equilibrium states are
the critical radius is now explicit in terms of the System gierent. The unstable radius for the system where there is
parameters. The independent variablesRifeandT and the adsorption is four orders of magnitude larger than that when
reference condition \f:orresponds to a homogeneous Vap@he adsorbed phase is not considered. The value of the Helm-
phase with pressure”. _ _ _ holtz potential is also much greater. This occurs because the
These two systems can be investigated in the same magiaqqyre in the system is being restricted by the adsorbed
ner as done in the Sec. lll. The same values of the indepersyase The unstable equilibrium must occur at a pressure just
dent variables are used. A comparison of the equilibriumyp, e the saturation value. This state can still be considered
states for the systems considered is given in Table I. 45 5 parrier to nucleation, which in this case will be much
_For the case of a droplet in a unbounded reservoir Withyigher than for either of the other systems considered. The
uniform pressure, the critical radius is only greater than zerQape size when the adsorbed phase is considered is smaller,
when pressure in the vapor is larger than the saturation pregyq thjs is because of the mass in the solid—vapor interface.
sure. WherR is equal toR. in Eq. (29), an extremum eXists  +ha value of the potential is accordingly smaller.
that is a maximum and thus corresponds to an unstable equi-

librium state. This state can be considered as a barrier to
nucleation®
For the system with no adsorption on the solid surfacey; syYSTEM WITH MULTIPLE DROPLETS
the behavior is similar to the case with adsorption ardss
than unity. This is because there is no upper limit to the  The theory developed can be extended to a system of
allowed value ofPY. There are two equilibrium states: one droplets. Neglecting the adsorption, one finds
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Thus, states. The stable equilibrium states at both C and D corre-

d to only one droplet being present in the system.
F—Fo=F—Fo(T.VT,NT,R;,...R)). spon ; . .

0 of ! n) The surface is symmetric about the liRg equal toR,.
As shown in Sec. IV, not considering the adsorption generPerpendicular to this lineF —F, always decreases. If the
ates the same qualitative behavior as choosirtg be less two droplets start with the same size, thermodynamics is

than unity. unable to predict the final configuration of the system, other
Vogelsberger’ assumes that all the droplets have thethan that it will contain only one droplet of the equilibrium

same size. Under this assumption, the size. Which droplet takes on this size is not known. Fluctua-
n n tions on the molecular level will determine which droplet

> R? and > R will remain. Once one droplet gets bigger than the other, by

i=1 i=1 the net transfer of one molecule from the vapor, the rest of

the path is defined. The above analysis can be extended to
systems with more than two droplets, and the same behavior
nR? and nR’, is observed. The stable equilibrium state always contains one
respectively. Vogelsberger’s model assumes that the numb&foplet. The radius in this state is the same critical radius
of droplets is an independent variable, i.e., found previously, 8.0%10 “m (see Table )L There is no
stable state where both droplets can exist simultaneously.
F—Fo=F—Fo(T,VI,N",R,n). This is contrary to the predictions of E@3), which would
This model can be used to predict that the total volume of
liquid at equilibrium will be independent of. Thus, the
stable equilibrium droplet size for a system withdroplets,
R, can be predicted if the stable equilibrium size for single
droplet,R? is known:

RI=n"1RL (33

From a thermodynamic standpoint, this is not correct. The
physical radius of each droplet can take on different values,
and must be considered independently in the formulation of
R. andF—Fy.

For the case of two drople(® equal to 2, a plot of F
—F, [from Eg.(31)] vs R; andR, is shown in Fig. 5. The
independent variables are the same as those used in the
single droplet analysis, and for simplicity, the adsorption is
neglected.

The surface has four extrema. There is a local maximun?'G' 5. H_elmholtz potential plotted as a function of the dlfoplet radii for a

. .. . system with two droplets. The system walls are nonadsorbing. There are two

at A, a saddle point at B and minima at C and D. Of intereskqyivalent stable equilibrium statgsoints C and B, each of which corre-
are the minima, which correspond to stable equilibriumsponds to the presence of one droplet.

terms in Eqs(31) and(32) are replaced by
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have two droplets present in the stable equilibrium statedroplets will take on the same size. In nonequilibrium sys-

each with a radius of 6.3910 % m. tems, such as droplet nucleation, such equilibrium relations
The most important thing to take from this analysis ismust be used with caution.

that the critical radius is a thermodynamic property of the
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