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Droplet stability in a finite system: Consideration of the solid–vapor
interface

A. J. H. McGaugheya) and C. A. Wardb)

Thermodynamics and Kinetics Laboratory, Department of Mechanical and Industrial Engineering,
University of Toronto, 5 King’s College Road, Toronto, Canada M5S 3G8

~Received 23 May 2002; accepted 7 January 2003!

The thermodynamic stability of a single, one-component droplet in a finite system with adsorbing
walls is investigated. The conditions under which a stable equilibrium state of the droplet is
predicted to exist depend critically on the adsorption isotherm of the confining walls. If the amount
absorbed remains finite when the pressure in the vapor is greater than the fluid’s saturation pressure,
then a stable equilibrium state is possible. When the model is extended to a system of multiple
droplets, the stable equilibrium state is predicted to always correspond to a single droplet. ©2003
American Institute of Physics.@DOI: 10.1063/1.1554752#
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I. INTRODUCTION AND BACKGROUND

A. Kelvin relation

The equilibrium conditions at an isothermal, spheric
one component liquid–vapor interface can be predicted
the Kelvin relation1

PV5P` expFv`
L ~PV2P`12gLV/R!

kT G , ~1!

whereP is pressure,g is surface tension,v is specific vol-
ume, R is the radius of curvature,k is the Boltzmann con-
stant, andT is temperature. SuperscriptsL, V and LV refer to
the liquid phase, vapor phase, and the liquid–vapor interfa
and the subscript̀ refers to saturation conditions. The de
vation of the Kelvin relation assumes mechanical and th
mal equilibrium at the interface, and equality of the chemi
potentials of each phase. The saturation properties are e
ated at the system temperature. When the liquid is on
concave side of the interface, such as for a droplet,R is
greater than zero. In this case, the Kelvin relation pred
that the pressure in the vapor will be always higher than
saturation pressure~i.e., at equilibrium, the vapor is supe
saturated!.

There have been many attempts to experimentally ve
the Kelvin relation, but none have gotten agreement
within less than several percent.2,3 Some investigations hav
considered nonequilibrium processes, while the Kelvin re
tion applies only to an equilibrium state. One of the ma
difficulties is that the predicted difference betweenPV and
P` is only significant for very small radii of curvature. Fo
example, for water at 20 °C, a droplet radius smaller than
mm is necessary to get a difference betweenPV andP` of at
least 1 Pa~for this and all subsequent calculations, therm
physical properties are taken from Ref. 4!. For meaningful
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droplet sizes (R*0.5 nm), the pressure difference (PV

2P`) on the right side of Eq.~1! is negligible compared to
the pressure difference (2gLV/R), allowing the Kelvin rela-
tion to be recast as

PV5P` expS 2gLVv`
L

RkT D , ~2!

a form that is often used. The assumption required to use
approximation has been noted.1,2

B. Droplet stability

The stability of a single, one-component droplet was fi
investigated by Gibbs,5 who showed that such a droplet in a
isothermal, unbounded expanse of its own vapor at a unifo
pressure higher than the saturation pressure correspondi
the system temperature will have one equilibrium size, a
that this state is unstable. The Kelvin relation can predict
value. The equilibrium state is unstable because mass tr
fer to or from the droplet has no effect on the pressure in
vapor. The unstable equilibrium state plays an important r
in homogeneous nucleation,6 and has been observed in m
lecular simulations.7,8

A second equilibrium state, which is stable, is predict
to exist in a one component system of finite size a
mass.9,10 The equilibrium state is stable because mass tra
fer to or from the droplet has an effect on the system pr
sure. The pressure in the vapor when the droplet is in
stable equilibrium state is always above the saturation p
sure, consistent with the Kelvin relation. In the work of Re
9 and 10, the effect of the solid–vapor interface was ignor
Rao and Berne9 support the prediction using molecular sim
lations, where the use of periodic boundary conditions elim
nates the need to consider a solid–vapor interface. The w
of Vogelsberger10 has been used to investigate drop
nucleation.11–13 There have been no experimental investig
tions of the predictions made in Refs. 9 and 10.

The addition of a second, nonvolatile component to
droplet can also bring about a stable equilibrium state.3,14,15

This is true for both the finite system and that investigated
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3620 J. Appl. Phys., Vol. 93, No. 6, 15 March 2003 A. J. H. McGaughey and C. A. Ward
Gibbs. In this case, the stability is a result of the lowering
the liquid chemical potential by the solute, generating eq
librium conditions at a pressure lower than the saturat
value. The experimental results of La Mer and Gruen16 have
been interpreted1 as an example of this stable state and
verification of the Kelvin relation for a two-component sy
tem.

In recent reports, claims have been made to the ef
that ‘‘the Kelvin equilibrium for a single component drop
always unstable.’’3 We find that for a droplet in a finite sys
tem, a critical issue is the nature of the equilibrium adso
tion isotherm that describes the adsorption on the confin
walls. As the pressure in the vapor phase approaches a
cal value, denoted asPA

V , the amount of adsorption is pre
dicted to asymptotically approach infinity. This pressure m
be viewed as the pressure at which filmwise condensa
occurs. The number and nature of the equilibrium states
predicted to depend on the value ofPA

V . The developed
theory is extended to a system of multiple droplets.

II. THEORETICAL DEVELOPMENT

A. Description of system

The system of interest is shown in Fig. 1. It is compos
of a composite system surrounded by a reservoir. The
parts make up an isolated system. The reservoir has a
stant and uniform temperatureT. The walls of the composite
system are rigid, nonpermeable and diathermal. Thus, w
the isolated system is at equilibrium, the composite sys
will have the same temperature as the reservoir. The com
ite system consists of a single, one-component sphe
droplet in its own vapor. The droplet radius isR. The com-
posite system has a volumeVT, a solid surface areaASV, and
contains NT molecules. The superscript SV refers to t
solid–vapor interface. Field effects are ignored. Based on
description of the composite system, it can be inferred t
its independent variables areT, VT, NT, andASV. These are
the independent variables ofF, the Helmholtz potential.17 A
minimum of F will correspond to a stable equilibrium sta
and a maximum will correspond to an unstable equilibriu
state.

FIG. 1. System of interest. The isolated system is composed of a comp
system surrounded by a reservoir. The composite system has fixed vo
mass and surface area and contains a spherical, one-component drople
own vapor.
Downloaded 13 Jul 2003 to 141.212.137.17. Redistribution subject to A
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B. Determination of equilibrium conditions

For a bulk phase,

F52PV1mN, ~3!

wherem is the chemical potential. For an interface,

F5gA1mN. ~4!

For the system under consideration,

F5FV1FL1FLV1FSV

52PVVV1mVNV2PLVL1mLNL1gLVALV

1mLVNLV1gSVASV1mSVNSV. ~5!

The necessary condition for an equilibrium state is that
total differential of the Helmholtz potential is equal to zer

For a system at constant and uniform temperature,
Gibbs–Duhem relation18 can be written for a bulk phase an
an interface as

2VdP1Ndm50, ~6!

and

Adg1Ndm50, ~7!

respectively. The system constraints are

VL1VV5VT, NV1NL1NLV1NSV5NT, ~8!

and a constant solid–vapor surface area. SettingdF to zero
and applying the Gibbs–Duhem relation and the constra
gives the equilibrium conditions:

mV5mL5mLV5mSV and PL2PV5
2gLV

R
. ~9!

The first condition states that there is no net mass tran
between the four phases. The second condition is the Lap
equation. Thermal equilibrium has been assumed with
use of the Helmholtz potential. Solving the equilibrium co
ditions simultaneously will give an expression for the rad
of an equilibrium droplet. This radius is called the critic
radius, and is denoted byRc .19–21 In Refs. 19–21, the criti-
cal radius is used to refer to the equilibrium size of a bub
in a liquid solution. Here, the same concept is applied t
droplet in its own vapor.

If the liquid phase is approximated as a slightly com
pressible liquid, and the vapor phase is approximated a
ideal gas, their chemical potentials can be expressed as18

mL@T,PL#5mL@T,P`~T!#1v`
L ~T!@PL2P`~T!#, ~10!

and

mV@T,PV#5mV@T,P`~T!#1kT lnF PV

P`~T!G . ~11!

With Eqs.~10! and~11!, and noting that the chemical poten
tials of the liquid and vapor phases are equal at satura
conditions,18 the equivalence of the liquid and vapor pha
chemical potentials in Eq.~9! can be simplified to give

Rc5
2gLV

kT

v`
L lnS PV

P`
D1~P`2PV!

. ~12!

ite
e,

n its
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



in

ra
th
a
e

:
n
-
en
st
y

qu
o
w
ed

a

qu

by

n

e
ur
rb
f
ti

o

e

e

le

re-

and
s,

–
tate.

fer-

ilib-

ped
-
ion,
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All fluid properties are assumed to be evaluated atT unless
noted. Equation~12! can be rearranged to give the Kelv
relation, Eq.~1!, with R equal toRc .

It is desirable to have the expression for the critical
dius in terms of the independent variables. By applying
system constraints, the assumption of an ideal vapor ph
and by neglectingNLV, the pressure in the vapor can b
expressed as

PV5

S NT2NSV2
4pR3

3vL D kT

VT2
4pR3

3

. ~13!

Equations~12! and~13! are two equations in four unknowns
Rc , R, NSV, andPV. It is important to distinguish betwee
Rc andR. The critical radius,Rc , is a thermodynamic prop
erty of the system, and is only a function of its independ
variables. It defines an equilibrium condition, and exi
whether or not there is a droplet actually present in the s
tem. The radius of an existing droplet,R, can take on any
value as long as it satisfies the system constraints. At e
librium, Rc must be equal toR, which reduces the problem t
two equations in three unknowns. In order to close the t
equations, a model of the solid–vapor interface is requir

The Brunauer-Emmett-Teller~BET! isotherm22 has his-
torically been used to analyze a solid–vapor interface
equilibrium. It predicts the number of molecules,NSV, that
will adsorb on a smooth homogeneous solid surface at e
librium as a function of the pressure in the vapor,PV. By
generalizing the derivation of the BET isotherm done
Hill, 23 the a isotherm is defined as24

NSV5

MASVCa
PV

P`

S 12a
PV

P`
D F11~C21!a

PV

P`
G , ~14!

whereM is the number of adsorption sites per unit area, a
C and a are constants. The parametersM, C, and a are
functions of temperature and must be determined experim
tally. The model assumes that multilayer adsorption occ
and that there is no interaction between stacks of adso
molecules. WhenaPV/P` is equal to unity, the number o
adsorbed layers becomes infinite and filmwise condensa
will occur. Thus, PA

V is equal to P` /a. Keshavarz and
Ward24 have applied this isotherm to experimental results
water adsorbing on glass surfaces. Thea isotherm is used in
all the ensuing analysis. We note that the BET isotherm
recovered from Eq.~14! whena is equal to unity.

Equations~13! and~14! are two equations with the thre
unknownsNSV, PV, andR. They can be solved to givePV

and NSV as functions ofR. The critical radius can then b
expressed as

Rc5Rc~T,VT,NT,ASV,R!.

With the requirement thatRc be equal toR in an equilibrium
state, the equations have been closed. It is not possib
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solve the equations algebraically; a numerical solution is
quired. Before investigating the behavior ofRc , the Helm-
holtz potential will be formed.

C. Formation of the Helmholtz potential

The Helmholtz potential is given by Eq.~5!. As it stands,
there is no way of plottingF vs R. This problem can be
resolved by introducing a reference conditionF0 , defined as
the state where there is no droplet present in the system
the vapor is in equilibrium with the adsorbed phase. Thu

F052P0
VVT1mV@T,P0

V#N0
V1g0

SVASV

1mSV@T,g0
SV#N0

SV , ~15!

where

P0
V5

~NT2N0
SV!kT

VT , ~16!

andN0
SV andN0

V are the number of molecules in the solid
vapor interface and the vapor phase in the reference s
N0

SV can be found by solving Eqs.~13! and ~14! with R set
equal to zero. The solid–vapor surface tension in the re
ence state isg0

SV . By conservation of mass,

N0
V1N0

SV5NT, ~17!

and as the two phases in the reference state are in equ
rium,

F052~NT2N0
SV!kT1mV@T,P0

V#NT1g0
SVASV. ~18!

As the vapor has been approximated as an ideal gas,

mV@T,P0
V#5mV@T,PV#1kT lnS P0

V

PVD . ~19!

By applying Eq.~8!, subtractingF0 from F gives

F2F05~mL2mV!NL1~mLV2mV!NLV

1~mSV2mV!NSV2~PL2PV!VL1gLVALV

1NTkTF12 lnS P0
V

PVD G2PVVT

1~gSV2g0
SV!ASV. ~20!

At equilibrium, Eq.~9! can be applied, and Eq.~20! reduces
to

F2F054pR2gLV2
8pR3gLV

3Rc

1NTkTF12 lnS P0
V

PVD G
2PVVT2N0

SVkT1~gSV2g0
SV!ASV. ~21!

Note that asF0 is constant,d(F2F0) is equivalent todF.
To determine an expression for the last term in Eq.~21!

in terms of the independent variables, a method develo
by Keshavarz and Ward24 is used. For a solid–vapor inter
face under isothermal conditions the Gibbs–Duhem relat
Eq. ~7!, may be written as

S ]gSV

]mSVD
T

52
NSV

ASV . ~22!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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As the chemical potential in the solid–vapor interface
equal to that of the vapor, and the vapor has been assum
behave ideally,

gSV2g0
SV52kTE

P0
V

P
V NSV

ASVPV dPV. ~23!

With NSV from Eq. ~14!, the right side of Eq.~23! can be
integrated to give

gSV2g0
SV5kTM lnF S 12a

PV

P`
D S 11~C21!a

P0
V

P`
D

S 12a
P0

V

P`
D S 11~C21!a

PV

P`
D G ,

~24!

so that the Helmholtz potential can be expressed as

F2F05F2F0~T,VT,NT,ASV,R!.

Thus, given the values of the independent variablesT, VT,
NT, and ASV, anda-isotherm parametersM, C, anda, the
Helmholtz potential can be plotted as a function of the dr
let radiusR and the stability of the system can be analyz

III. THEORETICAL INVESTIGATION

The function a(T) in the a isotherm determines th
pressurePA

V at which film-wise condensation will occur. Re
cent experiments24 have suggested that for water adsorbi
on glass,a is slightly greater than unity~a21 on the order of
1027), so that the asymptote is found to occur at a press
less than the saturation value. We start by considering
stability of the droplet using thea-isotherm for the case ofa
equal to or greater than unity.

A. a equal to or greater than unity

In Fig. 2~a!, a plot of Rc vs R for a equal to unity is
shown. The values ofT, VT, NT, and ASV are chosen as
20 °C, 0.0041 m3, 3.131020, and 0.038 m2, respectively, and
the fluid is water. These values are typical of an appara
recently used to investigate water droplet evaporation.25 At
this temperature, the saturation pressure is 2339 Pa, and
a equal to unity,PA

V is equal to 2339 Pa. Thea-isotherm
parametersC andM are taken as 425.3 and 9.231016m22,
values found for water adsorbing on glass at 20 °C in R
24. While these values are only indicated to be valid
pressures very close to the asymptote, we use them ove
entire pressure range to keep the analysis reasonable. As
be seen, it is the location of the asymptote that is the m
important feature of the isotherm.

The critical radius is always less than zero, and it w
never intersect with the lineRc equal toR @also shown in
Fig. 2~a!#. Therefore, there are no equilibrium states with
droplet present. The only equilibrium state is when there
no droplet present. This is the reference stateF0 . Other val-
ues of the independent variables were considered, and
result was always found. In Fig. 2~b!, a plot of F2F0 as a
function of R is shown. The Helmholtz potential is a mon
tonically increasing function ofR with a global minimum at
R equal to zero.
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To understand why no equilibrium states exist, consi
the derived equilibrium conditions. The Laplace equati
and the equivalence of the liquid and vapor chemical pot
tials were combined to give the Kelvin relation. It predic
that the pressure in the vapor at equilibrium must be hig
than the saturation pressure. By choosinga equal to unity,
the pressure in the vapor cannot be greater than the satur
pressure, or filmwise condensation will occur. These t
equilibrium conditions are mutually exclusive, and it
therefore impossible for there to be any equilibrium sta
with a droplet present, stable or unstable. Using the sa
reasoning, there will be no equilibrium states ifa is greater
than unity~i.e., when the location of the pressure asympt
is below the saturation pressure!.

Based on these results, a stable droplet is not predi
to exist under any conditions. This result has arisen from
inclusion of the adsorbed phase. However, while the exp
mental results of Keshavarz and Ward24 suggest thata is
greater than unity for a water–glass system, nothing in
derivation of thea isotherm requires this to be true. We ne
consider the case ofa less than unity, where the pressu
asymptote is at a location above than the saturation press

B. a less than unity

For the same independent variables used in the prev
section, the curves ofRc and F2F0 as functions ofR are
plotted in Fig. 3 fora equal to 0.9999, which corresponds

FIG. 2. ~a! Critical radius and~b! Helmholtz potential plotted as a function
of the droplet radius fora equal to unity. As the curve for the critical radiu
does not intersect with the lineRc equal toR, there are no equilibrium state
with a droplet present.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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a PA
V value of 2339.23 Pa. The results are significantly d

ferent compared to those shown in Fig. 2. The critical rad
is now positive over a certain range ofR, and there are two
intersections with the lineRc equal toR. There are thus two
equilibrium radii. This is not unexpected, as both the Kelv
relation and thea-isotherm equation can be satisfied as
pressure in the system can be above the saturation v
without the possibility of filmwise condensation. The equ
librium radii are 2.0531025 m and 6.4631024 m and will
be denoted byRc1 andRc2 , respectively. From Fig. 3~b!, the
first equilibrium state is unstable~a maximum ofF2F0),
while the second is stable~a minimum!. The pressure in the
vapor in the unstable equilibrium state is 2339.123 Pa an
the stable equilibrium size is 2339.004 Pa. Both of th
pressures are above the saturation pressure, consistent
the Kelvin relation, and belowPA

V .

C. Number of equilibrium states

Experimentally, the equilibrium pressure in the vap
could not be distinguished from the saturation pressure
the values ofa considered. With this in mind, it is possible t
predict how the equilibrium state will change if one of th
independent variables is changed.

Suppose that the temperature of the system discusse
Sec. III B is raised to 21 °C whileVT, NT, andASV are held
constant. The adsorption isotherm parameters are assum

FIG. 3. ~a! Critical radius and~b! Helmholtz potential plotted as a functio
of the droplet radius fora equal to 0.9999. There are two equilibrium stat
with a droplet present.
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be valid over a small range of temperatures without sign
cant error. The value ofa is held constant. As the saturatio
pressure for a pure substance is a monotonically increa
function of temperature, the saturation pressure used in
calculations will increase. For equilibrium to be restored,
pressure in the vapor will need to rise to a value sligh
above the new saturation pressure. The only source of m
is the droplet, and it will evaporate until the new equilibriu
pressure is reached. The stable equilibrium size should
crease, and this is what is found. The mass in the adso
phase does not change significantly. A plot showingF2F0

vs R at temperatures of 20 and 21 °C is shown in Fig. 4. A
indicated is the path that the droplet would follow as
moved between equilibrium states. The system respond
as to minimizeF2F0 , and this is accomplished by the drop
let getting smaller. A similar thought process can be used
predict the effect of changing the other independent v
ables.

Now consider the case of changing the temperature
the example system to 23 °C. The droplet will evapora
raising the pressure in the vapor. However, in this case
completely evaporates, and the resulting equilibrium stat
a homogeneous superheated vapor in equilibrium with
adsorbed phase. There is not enough mass in the dropl
raise the pressure to above the new saturation value. A
of F2F0 at 23 °C is also shown in Fig. 4. Note that there
a global minimum when the radius is equal to zero. It is
stable equilibrium state.

As the system temperature increases, the system
from having two droplet equilibrium states to having non
There will be a transition point where there is one equil
rium state. This will correspond to an inflection point on t
F2F0 curve, and is therefore an unstable equilibrium sta
Thus, even whena is less than unity, for there to be a stab
equilibrium state at a temperatureT, there are further restric
tions on the values of the independent variablesVT, NT, and
ASV. For the case of no adsorption, this issue has b
addressed.26

FIG. 4. Helmholtz potential plotted as a function of the droplet radius
three different temperatures. As the temperature increases, the size o
stable equilibrium size decreases until there are no equilibrium states w
droplet present.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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IV. COMPARISON TO PREVIOUS WORK

The results of Sec. III are now compared to the pred
tions of Refs. 5, 9, and 10. If no adsorption occurs, Eq.~12!
can still be applied for the critical radius, but the expressio
for the Helmholtz potential, Eq.~21!, and the relevant pres
sure terms, Eqs.~13! and ~16!, simplify to

F2F054pR2gLV2
8pR3gLV

3Rc

1NTkTF12 lnS P0
V

PVD G2PVVT, ~25!

PV5

S NT2
4pR3

3vL D kT

VT2
4pR3

3

, ~26!

and

P0
V5

NTkT

VT . ~27!

In this case, the reference state corresponds to all the m
being in the vapor. This is the result obtained in Refs. 9 a
10.

In the limit of

NT@
4pR3

3vL and VT@
4pR3

3
, ~28!

Eqs.~25!–~27! simplify to

F2F054pR2gLV2
8pR3gLV

3Rc
, ~29!

and

P0
V5PV5

NTkT

VT . ~30!

This is the system that was investigated by Gibbs,5 and cor-
responds to a case where the droplet is in an unboun
reservoir with uniform pressure. Note that the expression
the critical radius is now explicit in terms of the syste
parameters. The independent variables arePV andT and the
reference condition corresponds to a homogeneous v
phase with pressurePV.

These two systems can be investigated in the same m
ner as done in the Sec. III. The same values of the indep
dent variables are used. A comparison of the equilibri
states for the systems considered is given in Table I.

For the case of a droplet in a unbounded reservoir w
uniform pressure, the critical radius is only greater than z
when pressure in the vapor is larger than the saturation p
sure. WhenR is equal toRc in Eq. ~29!, an extremum exists
that is a maximum and thus corresponds to an unstable e
librium state. This state can be considered as a barrie
nucleation.6

For the system with no adsorption on the solid surfa
the behavior is similar to the case with adsorption anda less
than unity. This is because there is no upper limit to
allowed value ofPV. There are two equilibrium states: on
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unstable and one stable. The unstable size is analogous t
unstable size found for the droplet in a pressure reserv
This can be seen by considering Eq.~25! in the limits of Eq.
~28!. In this case, the expressions for the critical radius a
the thermodynamic potential become equivalent to those
Gibbs for the same temperature and a pressure ofP0

V . For
this case,P0

V is equal to 3060.1 Pa. This is the value used
the reservoir pressure in the evaluation of Eq.~29!. The val-
ues of the radius and the potential at the unstable equilibr
are thus the same in both cases. Due to the very small e
librium droplet size, the finite nature of the system has
effect and the vapor phase acts like an unbounded reser

In the finite system, the stable equilibrium exists beca
mass transfer to or from the droplet will have an effect on
system pressure. If a droplet is in the stable equilibrium s
and some liquid evaporates, the pressure in the vapor
increase. To return to equilibrium, the pressure must
crease, and this is accomplished by having some of the va
condense on the droplet, bringing it back to its original si
A similar argument can be made for the case of vapor c
densing on the liquid surface.

While the behavior exhibited in both finite systems~with
and without adsorption! is qualitatively similar, the condi-
tions at both the unstable and stable equilibrium states
different. The unstable radius for the system where ther
adsorption is four orders of magnitude larger than that wh
the adsorbed phase is not considered. The value of the H
holtz potential is also much greater. This occurs because
pressure in the system is being restricted by the adso
phase. The unstable equilibrium must occur at a pressure
above the saturation value. This state can still be conside
as a barrier to nucleation, which in this case will be mu
higher than for either of the other systems considered.
stable size when the adsorbed phase is considered is sm
and this is because of the mass in the solid–vapor interf
The value of the potential is accordingly smaller.

V. SYSTEM WITH MULTIPLE DROPLETS

The theory developed can be extended to a systemn
droplets. Neglecting the adsorption, one finds

TABLE I. Comparison of the three models. Where applicable, the indep
dent variables areT5293.15 K, NT53.131020, VT50.000 41 m3, and
ASV50.0378 m2. The saturation pressure is 2339 Pa.

Ref. 5:
Unbounded

reservoir with
uniform
pressure

Refs. 9 and 10:
Finite system with

no adsorption

Current Work:
Solid–vapor interface
considered in a finite
system,a50.9999

Rc1 (m) 4.0031029 4.0031029 2.0531025

Rc2 (m) N/A 8.0531024 6.4631024

F2F0(Rc1) (J) 4.89310218 4.89310218 1.28310210

F2F0(Rc2) (J) N/A 20.0415 24.6631026

PV(Rc1) (Pa) 3060.100 3060.100 2339.123
PV(Rc2) (Pa) N/A 2339.773 2339.004
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Thus,

F2F05F2F0~T,VT,NT,R1 ,...,Rn!.

As shown in Sec. IV, not considering the adsorption gen
ates the same qualitative behavior as choosinga to be less
than unity.

Vogelsberger27 assumes that all the droplets have t
same size. Under this assumption, the

(
i 51

n

Ri
2 and (

i 51

n

Ri
3

terms in Eqs.~31! and ~32! are replaced by

nR2 and nR3,

respectively. Vogelsberger’s model assumes that the num
of droplets is an independent variable, i.e.,

F2F05F2F0~T,VT,NT,R,n!.

This model can be used to predict that the total volume
liquid at equilibrium will be independent ofn. Thus, the
stable equilibrium droplet size for a system withn droplets,
Rc

n , can be predicted if the stable equilibrium size for sing
droplet,Rc

1 is known:

Rc
n5n21/3Rc

1. ~33!

From a thermodynamic standpoint, this is not correct. T
physical radius of each droplet can take on different valu
and must be considered independently in the formulation
Rc andF2F0 .

For the case of two droplets~n equal to 2!, a plot of F
2F0 @from Eq. ~31!# vs R1 andR2 is shown in Fig. 5. The
independent variables are the same as those used in
single droplet analysis, and for simplicity, the adsorption
neglected.

The surface has four extrema. There is a local maxim
at A, a saddle point at B and minima at C and D. Of inter
are the minima, which correspond to stable equilibriu
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states. The stable equilibrium states at both C and D co
spond to only one droplet being present in the system.

The surface is symmetric about the lineR1 equal toR2 .
Perpendicular to this line,F2F0 always decreases. If th
two droplets start with the same size, thermodynamics
unable to predict the final configuration of the system, ot
than that it will contain only one droplet of the equilibrium
size. Which droplet takes on this size is not known. Fluct
tions on the molecular level will determine which dropl
will remain. Once one droplet gets bigger than the other,
the net transfer of one molecule from the vapor, the res
the path is defined. The above analysis can be extende
systems with more than two droplets, and the same beha
is observed. The stable equilibrium state always contains
droplet. The radius in this state is the same critical rad
found previously, 8.0531024 m ~see Table I!. There is no
stable state where both droplets can exist simultaneou
This is contrary to the predictions of Eq.~33!, which would

FIG. 5. Helmholtz potential plotted as a function of the droplet radii fo
system with two droplets. The system walls are nonadsorbing. There are
equivalent stable equilibrium states~points C and D!, each of which corre-
sponds to the presence of one droplet.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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have two droplets present in the stable equilibrium sta
each with a radius of 6.3931024 m.

The most important thing to take from this analysis
that the critical radius is a thermodynamic property of t
system, and only a function of the independent variablesT,
VT, NT, andASV. It is not dependent on the initial state o
the system~i.e., the initial number of droplets is not an in
dependent variable!.

VI. DISCUSSION AND CONCLUSION

To make a firm statement about the stability of a sing
one-component droplet in a finite system, the value ofa in
the a isotherm, Eq.~14!, is required. As the theoretical de
velopment does not give an indication of whethera should
be greater than or less than unity, experimental results
be required to elucidate the answer. The precision of
measurements required~pressures to within less than 1 P!
are difficult to obtain in any case, let alone near saturat
conditions.

The recent experiments of Keshavarz and Ward24 sug-
gest that for water adsorbing on glass,a is greater than unity,
and the pressure asymptote of the isotherm is at a v
lower than the saturation pressure. This result, combi
with the theory developed in Sec. II, predict that no sta
droplet equilibrium size will exist, in agreement with th
discussion of Reiss and Koper.3 The key point here is that th
nature of the stability is directly a result of the adsorpti
isotherm used to model the solid–vapor interface.

However, there is nothing in the development of thea
isotherm that requires the pressure asymptote to be below
saturation pressure. Ifa is chosen to be less than unity, th
asymptote will be above the saturation pressure, and a s
droplet is predicted to exist at a given temperature provi
the system volume, mass and solid surface area satisfy
ther constraints. If a solid surface exists for whicha is less
than unity, such a stable droplet could be used as an i
initial condition for a droplet evaporation experiment, whi
are typically entirely transient.25 In fact, this technique has
been used in molecular simulations of drop
evaporation.28,29

When the analysis is extended to a system that initia
contains more than one droplet, the stable equilibrium s
is always found to correspond to a single droplet. This
contrary to previous investigations that assumed that all
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droplets will take on the same size. In nonequilibrium sy
tems, such as droplet nucleation, such equilibrium relati
must be used with caution.
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